Normal orthogonality spaces

نویسندگان

چکیده

An orthogonality space is a set X together with symmetric and irreflexive binary relation ⊥, called the relation. A block partition of maximal mutually orthogonal elements X, decomposition collection subsets each which complement union others. (X,⊥) normal if any gives rise to unique space. The one-dimensional subspaces Hilbert equipped usual provides motivating example. Together maps that are, in natural sense, compatible formation decompositions from partitions, spaces form category, denoted by NOS. objective present paper characterise both objects morphisms NOS various perspectives as well compile basic categorical properties

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inner Product Spaces and Orthogonality

1 Dot product of R The inner product or dot product of R is a function 〈 , 〉 defined by 〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an] , v = [b1, b2, . . . , bn] ∈ R. The inner product 〈 , 〉 satisfies the following properties: (1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉. (2) Symmetric Property: 〈u,v〉 = 〈v,u〉. (3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 =...

متن کامل

Non-normal Derivation and Orthogonality

The main purpose of this note is to characterize the operators T ∈ B(H) which are orthogonal (in the sense of James) to the range of a generalized derivation for non-normal operators A,B ∈ B(H).

متن کامل

Numerical Range and Orthogonality in Normed Spaces

Introducing the concept of the normalized duality mapping on normed linear space and normed algebra, we extend the usual definitions of the numerical range from one operator to two operators. In this note we study the convexity of these types of numerical ranges in normed algebras and linear spaces. We establish some Birkhoff-James orthogonality results in terms of the algebra numerical range V...

متن کامل

Orthogonality and Disjointness in Spaces of Measures

The convex and metric structures underlying probabilistic physical theories are generally described in terms of base normed vector spaces. According to a recent proposal, the purely geometrical features of these spaces are appropriately represented in terms of the notion of measure cone and the mixing distance [1], a specification of the novel concept of direction distance [2]. It turns out tha...

متن کامل

Normal Biconformal Spaces Normal Biconformal Spaces

A new 8-dimensional conformal gauging avoids the unphysical size change, third order gravitational field equations, and auxiliary fields that prevent taking the conformal group as a fundamental symmetry. We give the structure equations, gauge transformations and intrinsic metric structure for the new biconformal spaces. We prove that a torsion-free biconformal space with exact Weyl form, closed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2022

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2021.125730